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Abstract

Control interfaces provide the most tangible connection between human users 

and  computer  software.  This  link  is  especially  important  in  interactive  real-time 

applications, like games and simulations, because users desire efficient controls that 

allow  them  to  maximize  their  interactivity  and  immersion  with  the  software. 

Traditionally, interfaces have been largely limited to keyboards and mice. Recently, 

however,  technological  advances  have  made  motion-sensitive  devices  not  only 

available to mainstream consumers but have also lifted restrictions limiting devices to 

two-dimensional  motion.  This  work  presents  a  3-dimensional  motion-sensitive 

interface alongside a natural application. Players can control a soaring red-tailed hawk 

and perform various  intuitive  flight  maneuvers  using  two Nintendo Wii  Remotes© 

(Wiimotes).
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Figure 1: Player Flying Alongside an AI Hawk



1 Introduction

Computer interfaces have long been restricted to simple input devices, most 

notably the keyboard and mouse. For many uses, these restrictions are not an issue. 

The keyboard is excellent for typing and the mouse’s two-dimensional restriction is 

not a concern since it  maps movement  onto the two-dimensional  computer  screen. 

Nevertheless,  computer  graphics  technology  was  only  limited  to  two-dimensional 

image generation for a short time. Now, 3D software is commonplace, ranging from 

Google Earth©  to complex video games. In these applications, the standard keyboard 

and mouse can only sometimes provide an efficient and intuitive mapping from user 

desire to software interpretation. This is especially apparent in computer games, where 

complex  actions  in  3-dimensional  space  must  be  controlled  by  two-dimensional 

inputs.  This  results  in  multiple  disappointing  gaps  between  player  intention  and 

software design. First, users must trace a steep learning curve to train their body to 

ignore  obvious  responses  to  visual  stimuli,  like  players  physically  leaning  around 

corners in a game, and learn new ones, like moving their thumbs slightly.  Second, 

video  game designers  are  limited  to  recycling  non-intuitive  reactions  players  have 

already learned or crafting games that are already limited to obvious mappings from 

keyboard or mouse or controller to game actions.
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To explore  and  address  these  restraints,  we examine  the  three-dimensional 

motion-sensitive  interface  provided  by  the  Wiimote  with  the  intent  of  creating  a 

natural and intuitive control scheme for soaring bird flight. Section 2 will examine the 

Wiimote and it’s output interpretation. Section 3 will explore our bird choice and its 

behaviors.  Section 4 will discuss the flight model and its relationship to the target 

behavior.  Section 5 will  highlight  various aspects  of  the system’s  implementation. 

Section 6 will conclude and propose future work.

2 Input Controls

Motivated by our goal to provide a natural and intuitive interface for soaring 

bird flight, an appropriate input device was researched and found. We settled on the 

Nintendo Wiimote for a variety of reasons. First, it has been used extensively in real-

time interactive applications  due to its  role as the primary input controller  for the 

Nintendo Wii video game console. That history, we hoped, would be a good indicator 

for the quality of accelerometer data and overall reliability. In addition, the Wiimote is 

commonplace due to the Wii’s popularity, so they are not too expensive. Importantly, 

the Wii and Wiimote communicate using the open Bluetooth Wireless Protocol, which 

computers often use for wireless input devices as well. Finally, the Wiimote contains 

two complementary methods of detecting motion. It contains both an ADXL330 3-
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axis accelerometer and a PixArt optical 

sensor  for  use in  conjunction  with an 

infrared  sensor  bar.  Unfortunately,  as 

we’ll discuss later, the infrared camera 

was not useful to us due to the goal that 

users  find  flight  natural.  Restricting 

users to always have the screen in view 

of  the  Wiimote’s  camera  was  simply 

not  feasible  given  the  wide  range  of  possible  input  positions.  So,  our  input  for 

controlling the player’s avatar comes solely from the accelerometer.

The Wiimote’s accelerometer reports acceleration data from three axes aligned 

with the Wiimote’s casing. In the standard orientation, with the Wiimote flat on a level 

surface  with  its  buttons  facing  up,  the  accelerometer  will  report  approximately 

[0,0,1], which demonstrates that it has been normalized to gravity and that the z-axis 

is positive normal to the button-face. (Figure 2) With gravity always present during 

usage sessions, the Wiimote is a functional tilt sensor. Note, however, that this is of no 

help when trying to orient the Wiimote in space. The Wiimote lying on the table will 

report the same value regardless of its rotation through the z-axis on the table. As we 

will see in the next section, tilt sensing provides a large subset of the data required for 

natural  soaring.  However,  dynamic  acceleration  measurements  are  required  for 
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Figure 2: Nintendo Wii Remote



flapping.  Unfortunately,  this  means  that  tilt  sensing  is,  at  best,  unreliable  during 

flapping since the Wiimote  is  moved quickly in all  three axes during flapping.  In 

addition,  linear  acceleration  cannot  be  easily  discriminated  from  gravitational  tilt 

during  small  time  frames,  which  means  that  the  two  modes  of  accelerometer 

interpretation  are  largely  incompatible.  These  issues  are  also  exacerbated  by  the 

Wiimote’s noisy accelerometer readings and Bluetooth communication latency.  Not 

surprisingly, Nintendo has noted these issues and will release the Wii Motion Plus, a 

Wiimote add-on with 3 gyroscopes, shortly after this work’s completion. The add-on 

will  certainly  help  discern  rotational  from  linear  motion.  Unfortunately,  we  are 

without the add-on.

3 Bird Choice

Still  motivated  by  the  set  goal  of  providing  an  interface  for  natural  and 

intuitive flight,  we sought out a bird with flight  characteristics  that  can be readily 

performed by humans. Identifying turning, diving, soaring, and flapping as the key 

bird flight behaviors that humans can mimic without trouble, we chose a bird species 

that performs them often and with appealing style, the Red-Tailed Hawk. These hawks 

live and hunt in areas where large soaring wings with high aspect ratios might  be 
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hazardous, so they have shorter wings 

than some soaring birds but make use 

of numerous wingtip slots to increase 

lift  and  reduce  wingtip  vortex  lag 

(Savile).  (Figure  3)  The  hawks 

primarily hunt from perches, of which 

they  are  very  protective.  Trees, 

especially  dead  ones,  tall  rocks,  and 

other high perches allow the hawk to 

spot  small  mammals,  especially 

squirrels,  with  minimal  exertion. 

When hunting from a perch, the bird 

must  dive  and  flap  rapidly  to  catch 

prey. However, when soaring, the hawk will rarely flap its wings, instead relying on 

thermals to retain altitude. For hawks, soaring is not as effective for hunting as using a 

perch but  is  nevertheless  a common behavior  for hawks due to its  importance for 

territory control and courtship displays (Ballam). 

Territory defense is very important for the hawks due to the usual scarcity of 

good hunting perches. Hawk pairs controlling territory with few perches can deplete 

prey  in  the  surrounding  area  and  thereby  reduce  their  reproductive  fitness.  This 
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Figure 3: Red-tailed Hawk



problem highlights  the  real  value  of  land  control:  the  perches  and  not  total  area 

(Janes). To protect their territory, hawks will attack low-flying invaders and especially 

perch-stealing invaders by diving, screaming, and attempting to knock the trespasser 

from the air or perch. Since diving is the preferred method of attack, the defender must 

exert  great effort  to gain altitude for each attack.  The importance of height during 

attacks  means  that  soaring  birds  have  not  only  that  advantage  but  can  also  see 

intruders  more  readily.  Trespassers  are  usually  juvenile  hawks without  territory or 

mate,  and  so  must  use  hidden  perches  and  avoid  soaring  flight  while  living  in 

contested  regions.  Soaring  is  also  important  for  courtship  displays,  which  often 

involve multiple vertical dives and stalls (Fitch).

4 Flight Model

Having identified the Red-Tailed Hawk as the player’s avatar, we can match its 

behaviors with our human-analogous flight abilities, soaring and flapping. Although 

these actions align well between species, we made some changes to facilitate human 

enjoyment. Most notable among these is to increase the flight speed by a factor of 

approximately five. Soaring, especially without flapping, lacks the excitement usually 

associated with flight. The same process of merging behaviors applies to mapping the 
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control scheme from Wiimote to avatar actions. There are three major flight gestures 

that  are  transferred  across  the  interface:  tilting  left/right,  pitching  up/down,  and 

flapping. (Figure 4) A fourth avatar behavior, diving, is induced automatically as a 

result of player diving behavior, specifically non-flapping pitching down. Turning and 

flapping (Figure 4cd), as well as their opposites, can be combined along their spectra 

to produce soaring behavior. Unfortunately, as discussed before, flapping flight cannot 

be combined with other methods due to the Wiimote’s inaccuracy during dynamic 

motion contexts. Despite the seeming simplicity and nice orthogonality of Wiimote 

gestures  shown in  Figure  4,  playtesters  had  trouble  holding  the  Wiimote  at  right 

angles.  This problem prompted  the creation of a basic  and largely hidden training 
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Figure 4: Flight Gestures



function  to  convert  casual  user 

grips  to  the  well-defined  basis 

where the Wiimote accelerometer 

axis  align  with  gravity  and  the 

player’s facing direction. The goal 

of  this  training  function  is,  as 

simply  as  possible,  to  have  the 

user  hold  the  Wiimote  as  they 

desire and have the flight occur as they expect. The requirement of simplicity removes 

the  possibility  of  multiple  calibration  steps,  which  precludes  full  orientation-

independent training, but the system settled upon provides a natural training solution 

with  only the  requirement  that  the long axis  of  the Wiimote  (IR camera  face)  be 

aligned with the vertical. Upon simple instruction, most users adopt the correct grip 

(Figure 6), though the system will properly train on any rotation of the Wiimote about 

the  X  and  Y  accelerometer  axes.  Note  that  those  changes  produce  different  tilt 

readings, while yaw rotations, as mentioned previously, will not change the direction 

of gravity relative  to  the accelerometers.  Because of this  limitation,  he conversion 

matrix from the trained accelerometer values to the standard one can be computed 

simply. First, the rotational change in the two monitored axes is calculated relative to 

the standard base.
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Figure 5: Change of Base



From this information a rotation matrix 

MR is constructed against which any new 

accelerometer data bc is multiplied to convert it 

from the new base to the standard one.

This simple and continuous conversion provides the necessary tolerance to allow 

players to immerse themselves in the simulation without worrying about the control 

mechanic.

The final aspect of the flight model is that governing the flight of the hawk 

through the air. There are four major forces acting on powered flying objects: lift, 

drag, thrust, and gravity. In the following equations, û represents the hawk’s up vector 

(green in Figure 7). Likewise all symbols with hats are unit vectors. F represents the 

forward vector of the bird (yellow in Figure 7) and v represents the hawk’s velocity. c 
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Figure 6: Standard Grip



with a subscript stand for various 

coefficients.  Gravity is the 

simplest force here since it is 

independent of the bird’s 

orientation. 

Lift is generated by the airfoil-

shaped wings of the hawk as air flows over and under the wings. Lift is only produced 

as air flows in the direction of the wings’ angle of attack and is scaled by the lift 

coefficient of the surface.

Drag is the force opposing motion through a fluid and dependent on the square of the 

velocity and the cross section of the object perpendicular to that movement. For this 

reason, I split the drag into two main components: the leading edge drag (blue in 

Figure 7) and the falling drag (green or red directions in Figure 7). The leading edge 

drag is the force that slows the hawk down in normal flight. Not surprisingly, the bird 

is streamlined in this direction and has a very low cross section, resulting in a very low 

drag coefficient, cd1.
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Figure 7: Flight Forces



The other component of drag slows movement of the hawk through its vertical axis 

when its wings are spread. This time, the cross section of the bird is at its greatest and 

so the drag coefficient is much higher, despite the similarity to the previous equation. 

This drag is especially important during sharp banking, where the hawk’s speed must 

be retained while shifting direction. 

Finally, flapping provides a forward force. Bird flapping produces a tremendously 

complicated series of vortices that serve to lift and propel the hawk forward, but we 

have chosen to simplify the model here both for time constraints and to make the 

interface more transparent for users. 

Occasionally, the bird will enter a thermal, which provides a vertical force similar to 

the opposite of gravity.

5 Implementation

To facilitate the creation of an application for this system, we chose to use 

Garage Games' Torque Game Engine Advanced because it was readily available with 

source code. This provided the framework for adding a new hawk character, large 
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terrains, and Wiimote inputs. 

The engine is written in C++ and 

supports the TorqueScript 

scripting language. The primary 

addition made was the 

integration of the Wiimote into 

the input system and the analysis 

of its accelerometers. This was 

done in both C++ and TorqueScript. The C++ side contains the low-level interface, 

change of base function, and calls script functions to report changes in the 

accelerometers. The script side, on the other hand, does most of the motion analysis. It 

does this in two main parts: the steering updates and flapping activation. As mentioned 

before, the first step in motion analysis is rotating the accelerometer data to fit the 

standard base. Once that function is complete, the code is independent of how the user 

is holding it and can more easily analyze motion since the standard axes align with 

gestures more clearly. Turning and pitching map directly from the X- and Y-axis, 

respectively, since they are usually controlled and stable motions, allowing tilt-sensing 

to be accurate. The accelerometer values are then used to set the steering angles for the 

bird. Similarly, they control the wing and tail angles on the hawk model. Flapping, 

however, is detected using linear motion through the Z-axis and so is handled very 

14

Figure 8: Low Soaring



differently. Flapping detection has three 

simultaneous requirements: the 

direction of the flap must alternate each 

stroke, both wings must be moving in 

the same direction, and consecutive 

strokes are close together. As noted 

previously, steering is limited during 

flapping because tilt-sensing is inaccurate during dynamic acceleration. As a 

consequence of these values, the hawk's diving behavior is also started or stopped, 

based simply on the magnitude of the hawk's forward speed projected along the 

negative Z-axis. Another aspect of this system are the AI hawks, which simulate 

player inputs to reach random destinations above the level. Simply put, they lazily turn 

towards targets when far away, flap when at low speeds, and will circle to gain altitude 

instead of flapping at high angles of attack. During normal play, their most obvious 

feature is a red particle trail, which gives away their position, which would otherwise 

be impossible to see due to the diminutive size of the hawks.

The next major addition is the terrain system. Although the Atlas terrain 

system was disabled and unsupported, we reimplemented it because the default terrain 

could not hold enough detail to properly display the approximately 13 kilometer 
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Figure 9: Arctic Generated Terrain



square territories needed. Using L3DT, a terrain generation program, we designed 

multiple island landscapes. 

The final and most visually important component is the hawk model itself. 

Modeled in 3D Studio Max, it is composed of 436 triangles weighted for animation 

control by 8 bones. It has a variety of animations that are blended together while in 

flight, including axis-separated rotations of the tail and distinct sequences for each 

wing. The hawk's texture is based on feather drawings and photos of red-tailed hawks.

Other minor code additions include a Wiimote debug display, thermal 

generation, graphical user interface, and numerous bug fixes.

6 Conclusion and Future Work

We believe that all three of the initial goals: natural flight, clear flight model, 

and immersive art, have been met with this work. Soaring is achieved with Wiimote 

tilt-sensing and is supplemented by change-of-base functionality that reduces user 

training drastically. The flight model is clear and intuitive, as well as based on actual 

physics principles. And lastly, the aesthetics of the game contribute considerably to 

the user's sense of flight. In addition, we learned a great deal about hawk behavior and 

flight, modeling, animation, accelerometer analysis, and game engine programming.
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Some aspects of the design did not go as planned, especially concerning the 

game engine and Wiimote. TGEA's stability, art pipeline, and inconsistent feature set 

left much to be desired. Large amounts of time were spent attempting to make the 

engine do what it supported already. Also, the Wiimote sensors were not as accurate 

as initially hoped. Although Nintendo is addressing the problems soon with the Wii 

Motion Plus add-on, the Wiimote itself is truly useful only in limited applications, 

unlike the ideal 3-dimensional motion-sensing device that it is often billed as.

Future work extends logically from this work. A full game can be constructed 

with this flight model as its base, with territory as contested property between players 

and AI hawks. In addition, there are opportunities to enhance the flight model by 

adding support for more complicated behaviors like taking off, landing, barrel rolls, 

and stalls.  Further examination into the best animation to represent flapping would be 

fruitful as well. Currently, the flaps correspond quite directly to player motion but can 

therefore look awkward because hawks rarely flap like humans. Similarly, more 

accurate flight gestures could be encouraged with visual positive feedback. Behaviors 

like proper wing strokes and wing angles could be taught this way. Furthermore, the 

current behaviors and new ones would be all enhanced by the use of the Wii Motion 

Plus or a more accurate position and acceleration sensor.
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