
Hawk: 3D Gestured-Based Interactive Bird Flight Simulation
Dartmouth Computer Science Technical Report TR2009-647

Thomas Yale Eastman
Advisor: Fabio Pellacini

June 2009

Hawk: 3D Gestured-Based Interactive Bird Flight Simulation
Thomas Yale Eastman

Advisor: Fabio Pellacini

Abstract

Control interfaces provide the most tangible connection between human users

and computer software. This link is especially important in interactive real-time

applications, like games and simulations, because users desire efficient controls that

allow them to maximize their interactivity and immersion with the software.

Traditionally, interfaces have been largely limited to keyboards and mice. Recently,

however, technological advances have made motion-sensitive devices not only

available to mainstream consumers but have also lifted restrictions limiting devices to

two-dimensional motion. This work presents a 3-dimensional motion-sensitive

interface alongside a natural application. Players can control a soaring red-tailed hawk

and perform various intuitive flight maneuvers using two Nintendo Wii Remotes©

(Wiimotes).

2

Figure 1: Player Flying Alongside an AI Hawk

1 Introduction

Computer interfaces have long been restricted to simple input devices, most

notably the keyboard and mouse. For many uses, these restrictions are not an issue.

The keyboard is excellent for typing and the mouse’s two-dimensional restriction is

not a concern since it maps movement onto the two-dimensional computer screen.

Nevertheless, computer graphics technology was only limited to two-dimensional

image generation for a short time. Now, 3D software is commonplace, ranging from

Google Earth© to complex video games. In these applications, the standard keyboard

and mouse can only sometimes provide an efficient and intuitive mapping from user

desire to software interpretation. This is especially apparent in computer games, where

complex actions in 3-dimensional space must be controlled by two-dimensional

inputs. This results in multiple disappointing gaps between player intention and

software design. First, users must trace a steep learning curve to train their body to

ignore obvious responses to visual stimuli, like players physically leaning around

corners in a game, and learn new ones, like moving their thumbs slightly. Second,

video game designers are limited to recycling non-intuitive reactions players have

already learned or crafting games that are already limited to obvious mappings from

keyboard or mouse or controller to game actions.

3

To explore and address these restraints, we examine the three-dimensional

motion-sensitive interface provided by the Wiimote with the intent of creating a

natural and intuitive control scheme for soaring bird flight. Section 2 will examine the

Wiimote and it’s output interpretation. Section 3 will explore our bird choice and its

behaviors. Section 4 will discuss the flight model and its relationship to the target

behavior. Section 5 will highlight various aspects of the system’s implementation.

Section 6 will conclude and propose future work.

2 Input Controls

Motivated by our goal to provide a natural and intuitive interface for soaring

bird flight, an appropriate input device was researched and found. We settled on the

Nintendo Wiimote for a variety of reasons. First, it has been used extensively in real-

time interactive applications due to its role as the primary input controller for the

Nintendo Wii video game console. That history, we hoped, would be a good indicator

for the quality of accelerometer data and overall reliability. In addition, the Wiimote is

commonplace due to the Wii’s popularity, so they are not too expensive. Importantly,

the Wii and Wiimote communicate using the open Bluetooth Wireless Protocol, which

computers often use for wireless input devices as well. Finally, the Wiimote contains

two complementary methods of detecting motion. It contains both an ADXL330 3-

4

axis accelerometer and a PixArt optical

sensor for use in conjunction with an

infrared sensor bar. Unfortunately, as

we’ll discuss later, the infrared camera

was not useful to us due to the goal that

users find flight natural. Restricting

users to always have the screen in view

of the Wiimote’s camera was simply

not feasible given the wide range of possible input positions. So, our input for

controlling the player’s avatar comes solely from the accelerometer.

The Wiimote’s accelerometer reports acceleration data from three axes aligned

with the Wiimote’s casing. In the standard orientation, with the Wiimote flat on a level

surface with its buttons facing up, the accelerometer will report approximately

[0,0,1], which demonstrates that it has been normalized to gravity and that the z-axis

is positive normal to the button-face. (Figure 2) With gravity always present during

usage sessions, the Wiimote is a functional tilt sensor. Note, however, that this is of no

help when trying to orient the Wiimote in space. The Wiimote lying on the table will

report the same value regardless of its rotation through the z-axis on the table. As we

will see in the next section, tilt sensing provides a large subset of the data required for

natural soaring. However, dynamic acceleration measurements are required for

5

Figure 2: Nintendo Wii Remote

flapping. Unfortunately, this means that tilt sensing is, at best, unreliable during

flapping since the Wiimote is moved quickly in all three axes during flapping. In

addition, linear acceleration cannot be easily discriminated from gravitational tilt

during small time frames, which means that the two modes of accelerometer

interpretation are largely incompatible. These issues are also exacerbated by the

Wiimote’s noisy accelerometer readings and Bluetooth communication latency. Not

surprisingly, Nintendo has noted these issues and will release the Wii Motion Plus, a

Wiimote add-on with 3 gyroscopes, shortly after this work’s completion. The add-on

will certainly help discern rotational from linear motion. Unfortunately, we are

without the add-on.

3 Bird Choice

Still motivated by the set goal of providing an interface for natural and

intuitive flight, we sought out a bird with flight characteristics that can be readily

performed by humans. Identifying turning, diving, soaring, and flapping as the key

bird flight behaviors that humans can mimic without trouble, we chose a bird species

that performs them often and with appealing style, the Red-Tailed Hawk. These hawks

live and hunt in areas where large soaring wings with high aspect ratios might be

6

hazardous, so they have shorter wings

than some soaring birds but make use

of numerous wingtip slots to increase

lift and reduce wingtip vortex lag

(Savile). (Figure 3) The hawks

primarily hunt from perches, of which

they are very protective. Trees,

especially dead ones, tall rocks, and

other high perches allow the hawk to

spot small mammals, especially

squirrels, with minimal exertion.

When hunting from a perch, the bird

must dive and flap rapidly to catch

prey. However, when soaring, the hawk will rarely flap its wings, instead relying on

thermals to retain altitude. For hawks, soaring is not as effective for hunting as using a

perch but is nevertheless a common behavior for hawks due to its importance for

territory control and courtship displays (Ballam).

Territory defense is very important for the hawks due to the usual scarcity of

good hunting perches. Hawk pairs controlling territory with few perches can deplete

prey in the surrounding area and thereby reduce their reproductive fitness. This

7

Figure 3: Red-tailed Hawk

problem highlights the real value of land control: the perches and not total area

(Janes). To protect their territory, hawks will attack low-flying invaders and especially

perch-stealing invaders by diving, screaming, and attempting to knock the trespasser

from the air or perch. Since diving is the preferred method of attack, the defender must

exert great effort to gain altitude for each attack. The importance of height during

attacks means that soaring birds have not only that advantage but can also see

intruders more readily. Trespassers are usually juvenile hawks without territory or

mate, and so must use hidden perches and avoid soaring flight while living in

contested regions. Soaring is also important for courtship displays, which often

involve multiple vertical dives and stalls (Fitch).

4 Flight Model

Having identified the Red-Tailed Hawk as the player’s avatar, we can match its

behaviors with our human-analogous flight abilities, soaring and flapping. Although

these actions align well between species, we made some changes to facilitate human

enjoyment. Most notable among these is to increase the flight speed by a factor of

approximately five. Soaring, especially without flapping, lacks the excitement usually

associated with flight. The same process of merging behaviors applies to mapping the

8

control scheme from Wiimote to avatar actions. There are three major flight gestures

that are transferred across the interface: tilting left/right, pitching up/down, and

flapping. (Figure 4) A fourth avatar behavior, diving, is induced automatically as a

result of player diving behavior, specifically non-flapping pitching down. Turning and

flapping (Figure 4cd), as well as their opposites, can be combined along their spectra

to produce soaring behavior. Unfortunately, as discussed before, flapping flight cannot

be combined with other methods due to the Wiimote’s inaccuracy during dynamic

motion contexts. Despite the seeming simplicity and nice orthogonality of Wiimote

gestures shown in Figure 4, playtesters had trouble holding the Wiimote at right

angles. This problem prompted the creation of a basic and largely hidden training

9

Figure 4: Flight Gestures

function to convert casual user

grips to the well-defined basis

where the Wiimote accelerometer

axis align with gravity and the

player’s facing direction. The goal

of this training function is, as

simply as possible, to have the

user hold the Wiimote as they

desire and have the flight occur as they expect. The requirement of simplicity removes

the possibility of multiple calibration steps, which precludes full orientation-

independent training, but the system settled upon provides a natural training solution

with only the requirement that the long axis of the Wiimote (IR camera face) be

aligned with the vertical. Upon simple instruction, most users adopt the correct grip

(Figure 6), though the system will properly train on any rotation of the Wiimote about

the X and Y accelerometer axes. Note that those changes produce different tilt

readings, while yaw rotations, as mentioned previously, will not change the direction

of gravity relative to the accelerometers. Because of this limitation, he conversion

matrix from the trained accelerometer values to the standard one can be computed

simply. First, the rotational change in the two monitored axes is calculated relative to

the standard base.

10

Figure 5: Change of Base

From this information a rotation matrix

MR is constructed against which any new

accelerometer data bc is multiplied to convert it

from the new base to the standard one.

This simple and continuous conversion provides the necessary tolerance to allow

players to immerse themselves in the simulation without worrying about the control

mechanic.

The final aspect of the flight model is that governing the flight of the hawk

through the air. There are four major forces acting on powered flying objects: lift,

drag, thrust, and gravity. In the following equations, û represents the hawk’s up vector

(green in Figure 7). Likewise all symbols with hats are unit vectors. F represents the

forward vector of the bird (yellow in Figure 7) and v represents the hawk’s velocity. c

11

Figure 6: Standard Grip

with a subscript stand for various

coefficients. Gravity is the

simplest force here since it is

independent of the bird’s

orientation.

Lift is generated by the airfoil-

shaped wings of the hawk as air flows over and under the wings. Lift is only produced

as air flows in the direction of the wings’ angle of attack and is scaled by the lift

coefficient of the surface.

Drag is the force opposing motion through a fluid and dependent on the square of the

velocity and the cross section of the object perpendicular to that movement. For this

reason, I split the drag into two main components: the leading edge drag (blue in

Figure 7) and the falling drag (green or red directions in Figure 7). The leading edge

drag is the force that slows the hawk down in normal flight. Not surprisingly, the bird

is streamlined in this direction and has a very low cross section, resulting in a very low

drag coefficient, cd1.

12

Figure 7: Flight Forces

The other component of drag slows movement of the hawk through its vertical axis

when its wings are spread. This time, the cross section of the bird is at its greatest and

so the drag coefficient is much higher, despite the similarity to the previous equation.

This drag is especially important during sharp banking, where the hawk’s speed must

be retained while shifting direction.

Finally, flapping provides a forward force. Bird flapping produces a tremendously

complicated series of vortices that serve to lift and propel the hawk forward, but we

have chosen to simplify the model here both for time constraints and to make the

interface more transparent for users.

Occasionally, the bird will enter a thermal, which provides a vertical force similar to

the opposite of gravity.

5 Implementation

To facilitate the creation of an application for this system, we chose to use

Garage Games' Torque Game Engine Advanced because it was readily available with

source code. This provided the framework for adding a new hawk character, large

13

terrains, and Wiimote inputs.

The engine is written in C++ and

supports the TorqueScript

scripting language. The primary

addition made was the

integration of the Wiimote into

the input system and the analysis

of its accelerometers. This was

done in both C++ and TorqueScript. The C++ side contains the low-level interface,

change of base function, and calls script functions to report changes in the

accelerometers. The script side, on the other hand, does most of the motion analysis. It

does this in two main parts: the steering updates and flapping activation. As mentioned

before, the first step in motion analysis is rotating the accelerometer data to fit the

standard base. Once that function is complete, the code is independent of how the user

is holding it and can more easily analyze motion since the standard axes align with

gestures more clearly. Turning and pitching map directly from the X- and Y-axis,

respectively, since they are usually controlled and stable motions, allowing tilt-sensing

to be accurate. The accelerometer values are then used to set the steering angles for the

bird. Similarly, they control the wing and tail angles on the hawk model. Flapping,

however, is detected using linear motion through the Z-axis and so is handled very

14

Figure 8: Low Soaring

differently. Flapping detection has three

simultaneous requirements: the

direction of the flap must alternate each

stroke, both wings must be moving in

the same direction, and consecutive

strokes are close together. As noted

previously, steering is limited during

flapping because tilt-sensing is inaccurate during dynamic acceleration. As a

consequence of these values, the hawk's diving behavior is also started or stopped,

based simply on the magnitude of the hawk's forward speed projected along the

negative Z-axis. Another aspect of this system are the AI hawks, which simulate

player inputs to reach random destinations above the level. Simply put, they lazily turn

towards targets when far away, flap when at low speeds, and will circle to gain altitude

instead of flapping at high angles of attack. During normal play, their most obvious

feature is a red particle trail, which gives away their position, which would otherwise

be impossible to see due to the diminutive size of the hawks.

The next major addition is the terrain system. Although the Atlas terrain

system was disabled and unsupported, we reimplemented it because the default terrain

could not hold enough detail to properly display the approximately 13 kilometer

15

Figure 9: Arctic Generated Terrain

square territories needed. Using L3DT, a terrain generation program, we designed

multiple island landscapes.

The final and most visually important component is the hawk model itself.

Modeled in 3D Studio Max, it is composed of 436 triangles weighted for animation

control by 8 bones. It has a variety of animations that are blended together while in

flight, including axis-separated rotations of the tail and distinct sequences for each

wing. The hawk's texture is based on feather drawings and photos of red-tailed hawks.

Other minor code additions include a Wiimote debug display, thermal

generation, graphical user interface, and numerous bug fixes.

6 Conclusion and Future Work

We believe that all three of the initial goals: natural flight, clear flight model,

and immersive art, have been met with this work. Soaring is achieved with Wiimote

tilt-sensing and is supplemented by change-of-base functionality that reduces user

training drastically. The flight model is clear and intuitive, as well as based on actual

physics principles. And lastly, the aesthetics of the game contribute considerably to

the user's sense of flight. In addition, we learned a great deal about hawk behavior and

flight, modeling, animation, accelerometer analysis, and game engine programming.

16

Some aspects of the design did not go as planned, especially concerning the

game engine and Wiimote. TGEA's stability, art pipeline, and inconsistent feature set

left much to be desired. Large amounts of time were spent attempting to make the

engine do what it supported already. Also, the Wiimote sensors were not as accurate

as initially hoped. Although Nintendo is addressing the problems soon with the Wii

Motion Plus add-on, the Wiimote itself is truly useful only in limited applications,

unlike the ideal 3-dimensional motion-sensing device that it is often billed as.

Future work extends logically from this work. A full game can be constructed

with this flight model as its base, with territory as contested property between players

and AI hawks. In addition, there are opportunities to enhance the flight model by

adding support for more complicated behaviors like taking off, landing, barrel rolls,

and stalls. Further examination into the best animation to represent flapping would be

fruitful as well. Currently, the flaps correspond quite directly to player motion but can

therefore look awkward because hawks rarely flap like humans. Similarly, more

accurate flight gestures could be encouraged with visual positive feedback. Behaviors

like proper wing strokes and wing angles could be taught this way. Furthermore, the

current behaviors and new ones would be all enhanced by the use of the Wii Motion

Plus or a more accurate position and acceleration sensor.

17

References
ANALOG DEVICES. 2006. ADXL330: Small, Low Power, 3-Axis ±3g iMEMS®
Accelerometer. http://www.analog.com/static/imported-
files/data_sheets/ADXL330.pdf

BALLAM, JM. 1984. The use of soaring by the Red-tailed Hawk (Buteo jamaicensis).
The Auk. ISSN 0004-8038.

FITCH, HS. 1946. Behavior and food habits of the red-tailed hawk. The Condor, p205
ISSN 0010-5422.

HEDEMSTROM, A. Migration by Soaring or Flapping Flight in Birds: The Relative
Importance of Energy Cost and Speed. Philosophical Transactions: Biological
Sciences, 342(1302), p353. The Royal Society

JANES, SW. 1984. Influences of territory composition and interspecific competition
on red-tailed hawk reproductive success. Ecology, p862. ISSN 0012-9658

LEE, J.C. 2008. Hacking the Nintendo Wii Remote. Pervasive Computing, IEEE
7(3) p39

NINTENDO WORLD REPORT. 2006. Nintendo and PixArt Team Up.
http://www.nintendoworldreport.com/newsArt.cfm?artid=11557

POORE, SO. 1997. Wing upstroke and the evolution of flapping flight. Nature, 387
p799. ISSN 0028-0836

RAYNER, J. M. V. 1979. A New Approach to Animal Flight Mechanics. J Exp Biol
80, p17

SAVILE, DBO. 1957. Adaptive evolution in the avian wing. Evolution, p212. ISSN
0014-3820.

THOMAS, ALR. 1993. On the Aerodynamics of Birds' Tails. Philosophical
Transactions: Biological Sciences, 340(1294) p361. The Royal Society.

WU, J. 2003. Realistic Modeling of Bird Flight Animations. ACM Transactions of
graphics, 22(3) p888. ISSN 0730-0301

18

Image Credit
Figure 2:
http://upload.wikimedia.org/wikipedia/commons/b/bc/Wii_Remote_Image.jpg

Figure 3:
http://upload.wikimedia.org/wikipedia/commons/c/c4/Red_tailed_hawk_saoring_Mar
yland_USA.jpg

19

